
Running Infiniband on the Cray XT3

Makia Minich
Oak Ridge National Laboratory

Oak Ridge, TN
minich@ornl.gov

Keywords: Cray, XT3, infiniband, Voltaire, linux, OFED,
OpenFabrics

Abstract
In an effort to utilize the performance and cost benefits of
the infiniband interconnect, this paper will discuss what was
needed to install and load a single data rate (SDR) infiniband
(IB) host channel adapter (HCA) into a service node on the
Cray XT3. Along with the discussion on how to do it, this
paper will also provide some performance numbers achieved
from this connection to a remote system.

OVERVIEW AND GOALS
System Layout

Since a discussion of the Cray XT3 architecture is beyond
the scope of this document, we are going to focus on the over-
all layout of the systems used in our test. Figure 1 shows the
extremely basic overview of the connections between our sys-
tems. (If you would like more specifics on the Cray XT3 ar-
chitecture, visit the Cray website1 which has a lot of useful
marketing media that provides a good overview.)

Figure 1. System Layout

Rizzo is a single rack of XT3 hardware comprised of 14
IO nodes (7 IO modules) and 68 compute nodes (17 compute
modules). Each of these IO nodes has a single 133MHz PCI-
X available for an expansion card. For this testing, we have
placed a dual-port, single data rate (SDR), 128MB Voltaire
host-channel adapter (HCA) into one of the IO nodes and
connected it to a Voltaire 9288 (288-port SDR) switch. While

1http://www.cray.com

it would be preferable (for testing as well as moving forward)
to have more than one HCA in Rizzo, at the time only one
was installed.

On the other end, we have Pinto which is an x86_64 based
linux cluster. While Pinto has a large number of nodes avail-
able, for this testing only four nodes were used. Each of the
nodes have a dual-socket single-core 3.4GHz Intel Xeon with
an 8-lane PCI-Express based Voltaire 4x SDR HCA.

The Voltaire 9288 and Pinto are co-located, which allows
us to use a standard CX4 infiniband cable (15 meter lengths)
between the nodes of Pinto and the Voltaire switch. Rizzo
happens to be a larger distance away, so we use an active
CX4 cable which allowed us to run a longer fiber connection
(100m) between Rizzo and the Voltaire 9288.

Normally, when someone talks about infiniband and clus-
ters, they are talking about using it as a high-performance in-
terconnect within a cluster. But, as you can see, in this testing
we’re using it to bridge two (or more) clusters together so
that we can provide a fast data-movement path between the
multiple clusters.

Operating System Software
Operating System
To avoid delving too deep into the intricacies of the XT3

software stack, we are going to focus on the two main pieces
that we need to be aware of. The IO nodes (and any type
of interactive node on the XT3) run diskless with a SuSE-
derived base OS (currently based on SuSE Enterprise 9). The
compute nodes, on the other hand, run Catamount which al-
lows the compute nodes to boot a micro-kernel and an appli-
cation.2 This allows the compute nodes to spend all of their
cycles running the application which can help to reduce OS
jitter. Pinto, being a standard linux cluster, is running RedHat
Enterprise Linux Workstation release 4 update 3. The system
breakdowns can be seen in table 1.

From the OS Comparison table we see that a kernel version
is mentioned for the Catamount nodes. While one can’t easily
typeuname -r on the command line of the compute node
(primarily due to the lack of any user-level interaction), there
is an actual kernel version associated with that boot (hence
the-ni suffix in the table). This kernel is encapsulated in the
stage2.sf file, which is created by the build process for

2http://www.cray.com/downloads/Cray_XT3_Datasheet.pdf

Table 1. OS Comparison

System OS Kernel Version
Rizzo UNICOS 1.4.19 (later 1.5.31)
• IO Nodes SuSE Enterprise 9 2.6.5-7.252-ss
• Compute Nodes Catamount 2.6.5-7.252-ni
Pinto RedHat Enterprise Linux Workstation 4 update 32.6.9-42.EL_lustre.1.4.7smp

the XT3 software stack.

Infiniband Stack
The OpenFabrics Alliance3 recently began distributing an

enterprise version of their stack. Created through a collabo-
ration between different infiniband vendors and opensource
community contributors, the OpenFabrics Enterprise Distri-
bution (OFED) is touted as the stable and supported open-
source infiniband stack. While development is still ongoing
for the main OpenFabrics software branch, the OFED stack
takes snapshots in time, to create a supported product for the
infiniband community. These releases supply an easy to build
and install framework which allows users to start utilizing
their infiniband interconnect regardless of what vendor and
OS stack is loaded on the system. By unifying the infiniband
stack, it has become easier to manage software revisions on
multiple platforms as well as provide consistent API’s for in-
terconnect development on these platforms.

Our testing is focusing on OFED 1.1 which contains sup-
port for all of the kernels involved in our testing. While nor-
mally we would build all of the tools associated with the in-
finiband stack, our system layout precludes us from needing
things like MPI. More importantly, we’re going to need IP-
over-IB (IPoIB) for standard ethernet connections, remote-
DMA access to pass large amounts of data across the inter-
connect, and the sockets direct protocol (SDP) to efficiently
encapsulate IP traffic into IB traffic.

Test Suite
The following tests were used to determine not only the

functionality of the infiniband connection but also to graphi-
cally plot the performance. Because of the nature of our sys-
tem (which is described in more detail in the System Layout
and Operating System Software sections), we can only focus
on RDMA and IP based tests. As a side effect, though, this
combination will also allow us to test SDP (sockets direct
protocol) over the IP interface.

Low-Level Infiniband Tests
Provided as a default functionality test by the OpenFabrics

Enterprise Distribution,ib_send_bw andib_send_lat
(low-level bandwidth and latency tests respectively) allow us

3http://www.openfabrics.org

to measure the total throughput we could expect from the
hardware (removing any constraints that the higher level in-
finiband protocols would impose).

When the utilities are run with the-a option, it performs
the tests with message sizes from 2 to 223 bytes for bandwidth
and 2 to 28 bytes for latency allowing us to see the trend in
performance as message size changes. Another advantage of
this tool is that it allows you to specify the IB transport that
you wish to use for the transfer: Reliable Connection (RC),
Unreliable Connection (UC), and Unreliable Datagram (UD).
While normally these three transports would hopefully be-
have the same, it’s good to make sure that they do, as each
have their own uses; the Infiniband Trade Association web-
site4 can provide a good in-depth look at these transports.

NetPIPE
NetPIPE5 is another bandwidth and latency measurement

tool. While it does typically use MPI over Infiniband (or any
other high performance interconnect), NetPIPE can also uti-
lize tcp-based connections, which allows us to test IP-over-
IB (IPoIB) connections. NetPIPE performs a ping-pong style
transfer to measure the transmission rates, and then outputs a
table of latency and bandwidth measurements for a range of
packet sizes.

Because of the nature of the TCP connections used by Net-
PIPE, we were easily able to use these same tests to measure
the performance of SDP over the infiniband connection. By
usingLD_PRELOAD to load thelibsdp.so libraries, we
were able to use the same NetPIPE binary to test both stan-
dard TCP connections as well as SDP connections.

GETTING INFINIBAND ON THE XT3
On a normal cluster, such as Pinto, building and loading

the OFED stack is a relatively easy process. You can easily
follow the instructions provided by the OFED release doc-
umentation to get things up and running. Life is a little bit
different on the XT3 though, as there are a few caveats to
keep in mind. The first is that we will only be affecting the IO
nodes on the XT3, the Catamount nodes will need to rely on
routing over Portals to utilize the infiniband connection (such

4http://www.infinibandta.org/specs/
5See URL http://www.scl.ameslab.gov/Projects/NetPIPE

as for lustre). The second is the limitations set out in the ker-
nel provided by Cray. Because the XT3 is a fully supported
platform, Cray makes specific decisions about what is made
available in the kernel and what is available in the hardware.
This is made painfully obvious when you attempt to build and
load the OFED stack only to receive the dreadfulunknown
symbol errors.

Kernel Changes
On the initial attempts to getting infiniband on the XT3

(primarily against Unicos version 1.4.19), we required a
couple changes to the default running kernel on the IO-
nodes. Two symbols which OFED relies on were not
being exported by the kernel:bad_dma_address and
dev_change_flags. Applying the following patch to the
IO-node kernel source, addresses this problem:

Listing 1. Kernel Patches
Patch t o a rch / x86_64 / k e r n e l / pc i−nommu . c
@@ −10,6 +10 ,9 @@

∗ Dummy IO MMU f u n c t i o n s
∗ /

+dma_addr_t bad_dma_address ;
+EXPORT_SYMBOL(bad_dma_address) ;
+

vo id ∗ p c i _ a l l o c _ c o n s i s t e n t (s t r u c t pc i_dev ∗hwdev ,
s i z e _ t s i z e ,

dma_addr_t∗dma_handle)
{

Patch t o n e t / co re / dev . c
@@ −3482 ,10 +3482 ,7 @@

i f d e f i n e d (CONFIG_BRIDGE) | | \
d e f i n e d (CONFIG_BRIDGE_MODULE)

EXPORT_SYMBOL(br_hand le_ f rame_hook) ;
e n d i f

−/∗ f o r 801 q VLAN s u p p o r t ∗ /
−# i f d e f i n e d (CONFIG_VLAN_8021Q) | | \

d e f i n e d (CONFIG_VLAN_8021Q_MODULE)
EXPORT_SYMBOL(de v_c ha nge _ f l a gs) ;

−#e n d i f
i f d e f CONFIG_KMOD
EXPORT_SYMBOL(dev_ load) ;
e n d i f

With the application of this patch, we were able to rebuild
and boot this kernel to make sure that everything was working
properly. In order to build the OFED modules (covered in the
next section), we used this modified source (rather than uti-
lizing the kernel headers provided by the installed XT3 soft-
ware).

Later versions of the XT3 kernel (starting with Unicos re-
lease 1.5) actually now have these patches incorporated. This
makes building and running the OFED stack much easier in
the long run. No longer do we need to rebuild the kernel, nor
do we actually need the source code to build the OFED mod-
ules (instead we are able to utilize the header files located in
/opt/xt-os/default).

Building and Loading OFED
Once we had a working kernel, we could then build the

OFED stack. To avoid kernel versioning mismatch errors, it is
important to keep an eye on the gcc versions throughout this
process. First, we need to make sure and build OFED with
the same gcc version that the running kernel was built with
(e.g. if the kernel was built with gcc-3.2, you need to build
the modules with gcc-3.2). As an added bonus, a lot of the
OFED tools fail to compile with gcc-3.2 and would prefer to
be built with gcc-3.4 or higher. For this reason, we build the
modules first and then the rest of the stack later. This is easily
done by creating two separateofed.conf files, the first to
build the modules and the second to build the userspace tools.

Depending on the version of the kernel being used, we
found that a change might be needed to the OFED source
code due to the OFED stack seeming to not recognize the
XT3’s kernel as a proper kernel value, and therefore not ap-
ply any of the needed patches to get things working. So, it
was needed to decompress theopenib-1.1.tgz source
file, apply the patch in listing 2 and then re-compress.

Listing 2. OFED Patches
Patch t o c o n f i g u r e
@@ −259 ,7 +259 ,7 @@

done
Apply d e f a u l t p a t c h e s
case ${KVERSION} i n

− 2.6 .5−7.244∗)
+ 2 .6 .5−7 .∗)

p r i n t f " \ nApply ing p a t c h e s f o r ${KVERSION} \
k e r n e l : \ n "

i f [−d ${CWD} / p a t c h e s /2 .6 .5−7 .244] ; t hen
f o r pa t c h i n ${CWD} / p a t c h e s /2 .6 .5−7 .244/∗

When all was said and done, we ended up with a few
RPM’s that we could then install into our IO node image and
be off and running, configuring the system just like any other
SuSE based image.

PERFORMANCE OF INFINIBAND ON THE
XT3

After successfully getting the infiniband connection up and
running on the XT3, we were able to measure the actual per-
formance of the infiniband link. Because of our system archi-
tecture, there is a limit in the types of tests that could be run.
In then end, though, we should be able to get a clear picture
on what kind of performance we can achieve.

For each of these tests, we used the infiniband node on
Rizzo as the server node. In addition, we will be using two
nodes on Pinto, one as a server (to show us the results of two
like nodes), and the other as a client which can connect to
both the Rizzo node and the other Pinto node. While it isn’t
preferential to mix the architectures (really, we should have
two Rizzo nodes interacting) these tests give us a hint of what
can actually be done with infiniband on Rizzo.

Low-Level Infiniband Tests
First, we’ll start with the low-level infiniband tests, which

should give us a good baseline of the overall performance of
the infiniband interconnect. For this test, we will be running
a server on Rizzo to connect to one Pinto node as well as
testing the two Pinto nodes with each other. Figure 2 shows
the results of this test.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

ou
gh

pu
t (

M
B

/s
)

Message Size (bytes)

Bandwidth Comparison
IB on XT3 Low-Level Bandwidth Results

bibw-RC-pinto
bibw-UC-pinto
bibw-UD-pinto

bw-RC-pinto
bw-UC-pinto
bw-UD-pinto

bibw-RC-rizzo
bibw-UC-rizzo
bibw-UD-rizzo

bw-RC-rizzo
bw-UC-rizzo
bw-UD-rizzo

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

La
te

nc
y

(u
s)

Message Size (bytes)

Latency Comparison
IB on XT3 Low-Level Latency Results

RC-pinto
UC-pinto
UD-pinto
RC-rizzo
UC-rizzo
UD-rizzo

Figure 2. Low-Level Infiniband Performance

We can first see the performance hit delivered to the sys-
tem due to the added complexity created by using the 100m
active cable from Rizzo to the Voltaire 9288 (specifically with
the bidirectional tests), with about a 400MB/s (bi-direction)
difference between Rizzo and Pinto. But, there is something
very interesting to pay attention to. The 133MHz PCI-X bus
has a theoretical peak of 1GB/sec, and Rizzo is perform-
ing at about 900MB/s, so uni-directionally we are able to
achieve close to the same rates as the PCI-e links (many PCI-
X based systems are still utilizing the 100MHz PCI-X bus,
which would have caused a peak limit at about 800MB/sec).

The latency difference between the two systems may be a
function of the bus differences, but more than likely this is
due to 100m cable.

NetPIPE
Now that we’ve seen the raw bandwidth that should be

available, we can now shift our focus to TCP based band-
width. If we were to use something standard, such as NFS or
SCP, over the infiniband connection, we would be relegated
to the IP-over-IB interface. It is no secret that current IPoIB
performance leaves a lot to be desired, but it is still usefulto
see what we can expect from IPoIB if we need to use it. As a
side effect of this, we are also able to take a look at SDP per-
formance (which basically encapsulates the TCP traffic and
re-routes it to the RDMA level). While still in heavy devel-
opment, SDP is already proving to be quite useful. Figure 3
shows the results of our testing.

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Bandwidth Comparison
IB on XT3 NetPipe Results

pinto.ipoib
pinto.sdp

rizzo.ipoib
rizzo.sdp

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 1 10 100 1000 10000 100000 1e+06

La
te

nc
y

(s
)

Message Size (bytes)

Latency Comparison
IB on XT3 NetPipe Results

pinto.ipoib
pinto.sdp

rizzo.ipoib
rizzo.sdp

Figure 3. NetPIPE Performance

On first glance, one can clearly see the primary bene-

fit of SDP over the standard IPoIB interface. While still
400MB/s below the full RDMA level, SDP is providing about
a 200MB/s increase over IPoIB. As more development con-
tinues on the SDP drivers, we should hopefully see these
numbers improve. The results from latency aren’t overly sur-
prising.

CONCLUSIONS
After a few failures in the initial attempts at bringing up in-

finiband on the XT3, we think that this shows quite well that
it can be done both functionally and effectively. These first
steps open the door to being able to provide another high-
speed data movement path off the XT3. With this new abil-
ity, we could effectively, for example, utilize the infiniband
interconnect as a storage network using SRP, iSER or even
using Lustre6 over infiniband to move large data sets from
the XT3 to a centralized Lustre filesystem. Though there is a
large amount of work still to be done to raise all performance
closer to low-level performance levels, we can now look at
infiniband as a viable option for the XT3.

ACKNOWLEDGMENTS
The author would like to thank Don Maxwell from ORNL

for putting up with inappropriately timed full system crashes
and a ton of incessant XT3 questions. Also, we’d like to thank
Andrew Lehtola from Cray for pushing our kernel changes
through the management chain and into the real release.

6http://www.lustre.org

